
SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Broad Recommender System: An Efficient
Nonlinear Collaborative Filtering Approach
Ling Huang, Member, IEEE, Can-Rong Guan, Zhen-Wei Huang, Yuefang Gao, Yingjie Kuang,

Chang-Dong Wang, Member, IEEE , and C. L. Philip Chen, Fellow, IEEE

Abstract—Recently, Deep Neural Networks (DNNs) have been widely introduced into Collaborative Filtering (CF) to produce more
accurate recommendation results due to their capability of capturing the complex nonlinear relationships between items and users.
However, the DNNs-based models usually suffer from high computational complexity, i.e., consuming very long training time and
storing huge amount of trainable parameters. To address these problems, we propose a new broad recommender system called Broad
Collaborative Filtering (BroadCF), which is an efficient nonlinear collaborative filtering approach. Instead of DNNs, Broad Learning
System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items, which can
avoid the above issues while achieving very satisfactory recommendation performance. However, it is not feasible to directly feed
the original rating data into BLS. To this end, we propose a user-item rating collaborative vector preprocessing procedure to generate
low-dimensional user-item input data, which is able to harness quality judgments of the most similar users/items. Extensive experiments
conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
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1 INTRODUCTION

I N this era of information explosion, the rich choice of
online services on mobile leads to an increasingly heavy

role for recommender systems. The basic idea of recommender
systems is to recommend the most suitable items to users
based on their hidden preferences found from historical be-
havioral data [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
In recommender systems, collaborative filtering is one of the
most classical algorithms, which has been widely used in many
real-world problems [11], [12], [13], [14], [15].

Traditional collaborative filtering is user-oriented or item-
oriented, which relies mainly on the ratings of similar users or
items to predict unknown ratings. Among various collaborative
filtering techniques, Matrix Factorization (MF) [16], [17], [18],
[19] is the most popular approach, which operates by learning
a latent space to represent users and items, and mapping users
and items into a common space. In the common space, the
recommender system predicts a personalized ranking of a
set of items for each user based on the similarity between
users and items. However, in practical applications, scoring
data is prone to long-tail distribution [20], which can lead
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to the sparsity problem in MF methods. To overcome the
sparsity problem, several methods have been proposed [21].
For example, adding social relations to MF or using invisible
feedback [22].

Deep Neural Networks (DNNs) have developed rapidly in
the past few years, which have been widely explored and
shown good results in various fields such as computer vision
and natural language processing. DNNs have also been intro-
duced into the field of recommender systems [23], [24], [25],
[26], [27], [28]. In the traditional matrix decomposition, the
relationships between users and items are usually assumed to
be linear, which is however not true in real-world applications.
To better learn complex nonlinear relationships between users
and items, Xue et al. proposed a Deep Matrix Factorization
(DMF) [24] that uses a dual-path neural network instead
of the linear embedding operation used in ordinary matrix
decomposition. DNNs are able to approximate any function, so
they are well suited for learning complex matching functions.
For example, He et al. proposed NeuMF under the Neural
Collaborative Filtering (NCF) framework [26], which takes
the connection of user embedding and item embedding as
the input and uses the Multi-Layer Perceptron (MLP) model
for prediction. Deng et al. proposed DeepCF [29] which is a
unified deep collaborative filtering framework integrating rep-
resentation learning and matching function learning. However,
the DNNs-based models requires a large number of iterative
training processes that consume time and computational re-
sources, and therefore cannot be applied to large-scale data
and are very time consuming. As shown in our experiments,
due to the out-of-memory error, most DNNs-based models
fail to generate results when dealing with an Amazon dataset
containing 429622 users, 23966 items, and 583933 ratings
on a server with an Intel Core i9-10900 CPU, GeForce RTX
3090, and 256GB of RAM. And even for the relatively small
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datasets that can generate results, most DNNs-based models
are time-consuming. In [28], a BP Neural Network with
Attention Mechanism (BPAM) has been proposed to mitigate
this problem by integrating the attention mechanism into the
BP network. However, the gradient-based optimization still
consumes long time.

To address the above problems, this paper proposes a novel
broad recommender system, called Broad Collaborative Filter-
ing (BroadCF), which is an efficient nonlinear collaborative
filtering approach. Different from the existing DNNs-based
methods that feed the user-item rating data into DNNs, the
proposed BroadCF method feeds the user-item rating data
into Broad Learning System (BLS) [30]. As shown in the
literature [30], [31], BLS is also able to approximate any
function, and its general approximation capability has been
theoretically analyzed at the beginning of its design and proved
by rigorous theoretical proof. In particular, BLS can map the
original samples to a discriminative feature space by using
random hidden layer weights according to any continuous
probability distribution [30], [31]. This random mechanism
provides a fast training process for BLS. That is, only the
weights from the hidden layer to the output layer need to be
trained by a pseudo-inverse algorithm. Therefore, BroadCF
does not need to consume so much training time compared
with the DNNs-based models, and is more suitable for larger
datasets due to the small number of stored parameters.

However, it is not a trivial task to feed the user-item rating
data into BLS. The DNNs-based methods take the original
user/item rating vectors (or their direct concatenation) as input,
which is suitable because the DNNs-based methods learn the
latent factor vectors by stacking several hidden layers, the
dimensions of which usually decrease monotonously from the
input layer to the output layer. Different from the DNNs-
based methods, BLS needs to broaden the original input data
into the mapped features and enhanced features with several-
order magnitude larger dimensions. Therefore, it is not feasible
to take the original user/item rating vectors (or their direct
concatenation) as input for BLS. Inspired by the previous
work [28], this paper proposes a user-item rating collaborative
vector preprocessing to generate low-dimensional user-item
input data, which is able to harness quality judgments of the
most similar users/items.

The main contributions of this work are summarized as
follows.
• A new broad recommender system called BroadCF is

proposed to overcome the problems of long training
time and huge storage requirements in the DNNs-based
recommendation models.

• A new data preprocessing procedure is designed to con-
vert the original rating data into the form of (Rating
collaborative vector, Rating one-hot vector) as input and
output of BroadCF.

• Extensive experiments are conducted on seven real
datasets to demonstrate the effectiveness of the model.
The results show that BroadCF significantly outperforms
other state-of-the-art algorithms and significantly reduces
training time consumption and storage costs.

The rest of this paper is organized as follows. In Section 2,

we will review the related work. In Section 3, we will intro-
duce the problem definition and preliminaries. In Section 4,
we will describe in detail the proposed BroadCF method. In
Section 5, we will report the experimental results along with
convincing analysis. Finally, we will conclude the paper in
Section 6.

2 RELATED WORK

2.1 Shallow Learning based Collaborative Filtering
Methods

Collaborative filtering is one of the most widely adopted
recommendation algorithms [32]. Early collaborative filtering
in its original form is user-oriented or item-oriented [32],
which relies primarily on the ratings of similar users/items
to predict unknown ratings. Many efforts have been made in
developing variants of CF from different perspectives [1], [3],
[33], [34], [35], [36]. In [33], Bell and Koren propose to learn
the interpolation weights from rating data as a global solution,
which leads to an optimization problem of CF and improves
the rating prediction performance. In [22], Koren propose to
extend SVD-based latent factor model to the SVD++ model
by adding a second set of item factors to model the item-item
similarity. Another early attempt is [34], in which the temporal
information is considered for improving the accuracy. Instead
of relying on the co-rated items, Patra et al. propose to utilize
all rating information for searching useful neighbors of the
target user from the rating matrix [35]. In order to recommend
new items and niche items to users, based on the observation
of the Rogers’ innovation adoption curve [37], Wang et al.
propose an innovator-based collaborative filtering algorithm
by designing a new concept called innovators [1], which is
able to balance serendipity and accuracy. For more literature
reviews of the shallow learning based collaborative filtering
methods, please refer to the survey papers [21], [38]. Despite
the wide applications, the conventional shallow learning based
CF methods assume the linear relationship between users and
items, which is however not true in the real-world applications.

2.2 Deep Learning based Collaborative Filtering
Methods

Recently, DNNs have been widely used in collaborative filter-
ing to learn the complex mapping relationships between users
and items due to their ability to approximate any continuous
function. For example, in [24], Xue et al. propose a new matrix
decomposition model based on a neural network structure. It
maps users and items into a common low-dimensional space
via a nonlinear projection. He et al. propose a neural network
structure to model the latent features of users and items, and
design a general framework for collaborative filtering based
on neural networks, called Neural Collaborative Filtering
(NCF) [26]. Three examples are developed, namely Gener-
alized Matrix Decomposition (GMF), Multi-Layer Perceptron
(MLP), and Neural Matrix Factorization (NeuMF). In [29],
Deng et al. propose a unified deep collaborative filtering
framework integrating representation learning and matching
function learning. In [39], Xue et al. propose a deep item-based
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TABLE 1
Summary of the main notations.

U , V User set, item set
R ∈ R|U|×|V| Rating matrix

ru,i Rating of user u to item i
r̂u,i Predicted rating of user u to item i
k Pre-specified number of nearest users of each user u

nu ∈ R1×k KNU index vector of user u, i.e. the index vector
storing the indexes of k nearest users (KNU) of user u

nu
j Index of the j-th nearest user of user u

pu
i ∈ R1×k KNU rating vector of user u on item i, i.e. the ratings

of the k nearest users of user u on item i

p̄u
i ∈ R1×k Post-processed KNU rating vector of user u on item i

l Pre-specified number of nearest items of each item i

ni ∈ R1×l LNI index vector of item i, i.e. the index vector
storing the indexes of l nearest items (LNI) of item i

ni
j Index of the j-th nearest item of item i

qu
i ∈ R1×l LNI rating vector of item i from user u, i.e. the ratings

of user u to the l nearest items of item i

q̄u
i ∈ R1×l Post-processed LNI rating vector of item i from user u

xu
i ∈ R1×(k+l) User-item rating collaborative vector for the given

user-item pair composed of user u and item i

dy
Maximum rating,
i.e. dimension of user-item rating one-hot vector

yu
i ∈ R1×dy

User-item rating one-hot vector for the given
user-item pair composed of user u and item i

D Training set of the proposed BroadCF algorithm
X ∈ R|D| × (k + l) Input matrix of BLS

Y ∈ R|D|×dy Output matrix of BLS
dz Dimension of each mapped feature group

Zj ∈ R|D|×dz The j-th mapped feature matrix
n Number of the mapped feature groups
φj The j-th nonlinear feature mapping function
dh Dimension of each enhanced feature group

Hj ∈ R|D|×dh The j-th enhanced feature matrix
m Number of the enhanced feature groups
ξj The j-th nonlinear feature enhancement function

W ∈ R(ndz+mdh)×dy Learnable weight matrix of BLS

collaborative filtering method, which takes into account of
the higher-order relationship among items. For more literature
reviews of the deep learning based collaborative filtering
methods, please refer to the survey paper [40]. However, due
to the large number of trainable parameters and complex
structures involved, the DNNs-based models usually suffer
from high computational complexity, i.e., consuming very long
training time and storing huge amount of trainable parameters.

In this paper, to address the above problems, we propose a
new neural network based recommender system called Broad
Collaborative Filtering (BroadCF). Instead of DNNs, Broad
Learning System (BLS) is used as a mapping function to learn
the complex relationships between users and items, which
can avoid the above issues while achieving very satisfactory
recommendation performance.

3 PROBLEM DEFINITION AND PRELIMINARIES

In this section, we will present the problem definition and pre-
liminaries. For clarity, Table 1 summarizes the main notations
used in this paper.

3.1 Problem Definition

Suppose that in the recommender system we are given a user
set U and an item set V respectively. Following [29], a user-
item rating matrix R ∈ R|U|×|V| is constructed from users’

ratings on items as follows,

Ru,i =

{
ru,i, if user u has rated item i

0, otherwise
(1)

where ru,i denotes the rating of user u on item i.
The goal of recommendation algorithms is to estimate the

missing ratings in the rating matrix R. The model-based
methods generate the predicted rating r̂u,i of user u to item i
as follows,

r̂u,i = f(u, i|Θ) (2)

where f denotes the mapping function that maps the model
input, e.g. the ratings of neighbor users or items, to the
predicted rating of the corresponding user-item pair composed
of user u and item i by utilizing the model parameters Θ [29].

The mapping function of DNNs-based CF inherits the
nonlinear representation learning capability of DNNs, and thus
it is able to learn the complex nonlinear relationships between
users and items. However, due to the large number of trainable
parameters involved, the complex structure and the continuous
iterative training process, the DNNs-based models often suffer
from high computational complexity, i.e., consuming very long
training time and storing huge amount of trainable parameters.
Although a recent work called BPAM [28] has shed light
on mitigating the problem of training time consumption by
integrating attention mechanisms into BP networks. However,
the gradient-based optimization still takes some time. In this
paper, instead of DNNs, a lightweight neural network called
broad learning system (BLS) [30] is used as a mapping
function to learn the complex relationships between users and
items, which can avoid the above issues while achieving very
satisfactory recommendation performance.

3.2 Preliminaries
Broad Learning System (BLS) is a lightweight neural network
that can approximate any function [30], which has been widely
used in many different applications [41], [42], [43], [44]. It is
based on a random vector functional linked neural network
(RVFLNN) [45]. In BLS, the original data are firstly mapped
into the mapped features by random weights, which are stored
in feature nodes. Next, the mapped features are further mapped
by random weights to obtain enhanced features, which are
used for extensive scaling. Finally, the parameter normaliza-
tion optimization problem is solved using the ridge regression
approximation to obtain the final network weights.

The advantage of BLS is that it can use random hidden
layer weights to map the original samples to a discriminative
feature space tensed by these vectors. The parameters of the
hidden layer nodes can be randomly generated according to
any continuous probability distribution, the rationale of which
has been theoretically proven. This random mechanism can
quickly provide a fast training process for BLS. It solves
the serious training time consuming problem suffered by the
DNNs-based models. More importantly, BLS retains the pow-
erful mechanism of randomly generating the weights of hidden
layer nodes based on any continuous probability distribution.
Specifically, the system can be updated incrementally in the
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Fig. 1. Illustration of the proposed BroadCF algorithm.

face of newly added samples and hidden nodes, without the
need of rebuilding the entire network from scratch. As a result,
BLS requires a small number of parameters to be stored, which
can solve the problem of huge storage requirements arising
from the DNNs-based models. Most importantly, the feature
layer to the output layer in BLS is directly connected, and
the structure is very simple. Therefore, even without a large
number of samples in the recommender system, prediction
performance can be ensured.

4 BROAD COLLABORATIVE FILTERING

In this section, we will describe in detail the proposed Broad
Collaborative Filtering (BroadCF) method. First of all, we
will describe how to transform the original user-item rating
data into the form of (Rating collaborative vector, Rating one-
hot vector) for each user-item pair, which will be taken as
input and output to the broad learning system. Then, we will
describe the broad learning part. Finally, we will describe
the rating prediction procedure and summarize the propose
BroadCF method. For clarity, Figure 1 illustrates the main
idea of the proposed BroadCF method.

4.1 Data Preprocessing

4.1.1 User-Item Rating Collaborative Vector
As shown in Eq. (2), for a user-item pair (u, i), the model-
based recommendation methods aim to establish a mapping
function from the user-item input data to the user-item rating.
A simple type of user-item input data is the direct concatena-
tion of the user rating vector Ru,: and the item rating vector
R:,i. It has been widely adopted in the DNNs-based methods,
i.e., the DNNs-based methods learn the latent factor vectors
from the original user/item rating vectors. However, it does not
work well in the case of BLS. This is because, different from
the DNNs-based methods, which stack several hidden layers
with decreasing layer sizes, BLS requires broadening the
original input features into the mapped features and enhanced

features, resulting in several-order magnitude larger dimen-
sion. In addition, directly utilizing extremely sparse user rating
vector and item rating vector may cause the overfitting issue.
Inspired by the previous work [28], [46], a user-item rating
collaborative vector preprocessing is proposed to generate the
low-dimensional user-item input data, which is able to harness
quality judgments of the most similar users/items.

First of all, for each user u, a set of k nearest users (KNU) is
obtained by calculating the cosine similarity between the rating
vectors of user u and other users. Let nu = [nu

1 ,n
u
2 , · · · ,nu

k ]
denote the KNU index vector of user u, i.e., the j-th nearest
user of user u can be expressed as nu

j ,∀j = 1, · · · , k. Then
for each user-item pair composed of user u and item i, a KNU
rating vector pu

i ∈ R1×k of user u on item i is obtained from
the rating matrix R with each entry pu

i [j] being defined as
follows,

pu
i [j] = Rnu

j ,i
∀j = 1, · · · , k. (3)

That is, pu
i [j] is the rating value of user nu

j to item i.
In the above procedure, it is possible that some entries pu

i [j]
are zeros, i.e., user nu

j has not yet rated item i. In [28], the
mean value of the ratings of user nu

j is used to fill the missing
rating, which however, treats all the items equally while failing
to utilize the rating of other similar users. To this end, we
propose a new strategy that fills the missing rating with the
rating of the nearest user of nu

j to item i, i.e.,

p̄u
i [j] =

{
Ru∗,i if pu

i [j] = 0

pu
i [j] otherwise

(4)

where u∗ denotes the nearest user of user nu
j who has rated

item i.
Similarly, for each item i, a set of l nearest items (LNI)

can be obtained by calculating the cosine similarity between
the rating vectors of item i and other items. Let ni =
[ni

1,n
i
2, · · · ,ni

l] denote the LNI index vector of item i, i.e.,
the j-th nearest item of item i can be expressed as ni

j ,∀j =
1, · · · , l. Then for each user-item pair composed of user u and
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item i, a LNI rating vector qu
i ∈ R1×l of user u on item i

is obtained from the rating matrix R with each entry qu
i [j]

being defined as follows,

qu
i [j] = Ru,ni

j
∀j = 1, · · · , L. (5)

That is, qu
i [j] is the rating value of user u to item ni

j .
Like before, the following strategy is used to fill the missing

entries

q̄u
i [j] =

{
Ru,i∗ if qu

i [j] = 0

qu
i [j] otherwise

(6)

where i∗ denotes the nearest item of item ni
j rated by user u.

After obtaining p̄u
i and q̄u

i , they are concatenated to form
the user-item rating collaborative vector, i.e.,

xu
i = [p̄u

i |q̄u
i ] ∈ R1×(k+l) (7)

Notice that the dimension of the input data xu
i , i.e. k + l, is

relatively small compared with that of the direct concatenation
of the user rating vector Ru,: and the item rating vector R:,i,
i.e. |U|+ |V|.

4.1.2 User-Item Rating One-Hot Vector

In addition, for each user-item pair (u, i) with known rating in
the training rating matrix, i.e. Ru,i 6= 0, the user-item rating
ru,i is transformed into a user-item rating one-hot vector yu

i ∈
R1×dy with

yu
i [j] =

{
1 if j = ru,i

0 otherwise
(8)

where dy is the maximum rating, e.g., 5.
Finally, for each user-item pair (u, i) with known rating

in the training rating matrix, the user-item rating collaborative
vector xu

i and the user-item rating one-hot vector yu
i are taken

as the input and output of a training sample (xu
i ,y

u
i ). That is,

the training set of the proposed BroadCF method is

D = {(xu
i ,y

u
i )|Ru,i 6= 0}. (9)

4.2 Broad Learning

In this subsection, we will describe the mapping function f
that maps the rating collaborative vector xu

i into the predicted
rating one-hot vector yu

i , which will be achieved by BLS.
According to [30], BLS consists of three modules, namely
mapped feature layer, enhanced feature layer, and output layer.

4.2.1 Mapped Feature Layer

Given the training set D = {(xu
i ,y

u
i )|Ru,i 6= 0}, the input

matrix of BLS is formed as

X =


xu1
i1

xu2
i2
...

x
u|D|
i|D|

 ∈ R|D|×(k+l) (10)

Algorithm 1 Broad Collaborative Filtering (BroadCF)
Training part:

1: Input: Training rating matrix R; number of nearest users
k; number of nearest items l; number of mapped feature
groups n; mapped feature dimension dz; number of en-
hanced feature groups m; enhanced feature dimension dh.

2: Obtain the k nearest users of each user u.
3: Obtain the l nearest items of each item i.
4: for all training user-item pair with Ru,i 6= 0 do
5: Generate user-item rating collaborative vector xu

i via
Eq. (7).

6: Generate user-item rating one-hot vector yu
i via Eq. (8).

7: end for
8: Generate the training set D via Eq. (9).
9: Generate the input matrix X and output matrix Y via Eq.

(10) and Eq. (11) respectively.
10: Generate the mapped feature matrices Zn and enhanced

feature matrices Hm via Eq. (13) and Eq. (15) respective-
ly.

11: Calculate the trainable weight matrix Y via Eq. (17).
Output: The trainable weight matrix W.
Testing part:

1: Input: A user-item pair (u, i) with unknown rating.
2: Generate user-item rating collaborative vector xu

i via
Eq. (7).

3: Feed xu
i into the Broad Learning procedure to generate

the user-item rating strength vector ŷu
i .

4: Convert ŷu
i into the predicted rating r̂ui via Eq. (18).

5: Output: The predicted rating r̂ui .

where |D| is the number of training samples, i.e., there are |D|
user-item pairs (u1, i1), (u2, i2), ..., (u|D|, i|D|). The output
matrix of BLS is formed as

Y =


yu1
i1

yu2
i2
...

y
u|D|
i|D|

 ∈ R|D|×dy . (11)

In the mapped feature layer, the input matrix X is trans-
formed into the mapped feature matrix Zj ∈ R|D|×dz as
follows

Zj = φj(XWzj + βzj ), j = 1, 2, · · · , n (12)

where dz denotes the dimension of each mapped feature group,
n denotes the number of the mapped feature groups, and
φj is the j-th nonlinear feature mapping function. In our
experiments, ReLu is used as the nonlinear feature mapping
function. In the above procedure, Wzj ∈ R(k+l)×dz and
βzj ∈ R|D|×dz are randomly generated matrices. In this way,
the mapped feature matrices can be obtained, i.e.,

Zn = [Z1|Z2 · · · |Zn] ∈ R|D|×ndz . (13)
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TABLE 2
Statistics of the seven datasets.

Datasets #Users #Items #Ratings Sparsity Scale
ml-la 610 9,724 100,836 98.30% [1, 5]

A-Digital-Music 1000 4,796 11,677 99.90% [1, 5]
A-Grocery-and-Gourmet-Food 2,500 7,527 11,532 99.96% [1, 5]

A-Patio-lawn-and-Garden 5,000 5,400 12,429 99.98% [1, 5]
A-Automotive 5,000 6,596 12,665 99.98% [1, 5]

A-Baby 6,000 5,428 17,532 99.98% [1, 5]
A-Instant-Video 429,622 23,966 583,933 99.98% [1, 5]

4.2.2 Enhanced Feature Layer

After obtaining Zn, the enhanced feature matrix Hj ∈
R|D|×dh can be calculated as follows,

Hj = ξj(Z
nWhj + βhj ), j = 1, 2, · · · ,m (14)

where dh denotes the dimension of each enhanced feature
group, m denotes the number of the enhanced feature groups,
and ξj is the j-th nonlinear feature enhancement function. In
our experiments, ReLu is used as the nonlinear feature en-
hancement function. In the above procedure, Whj ∈ Rndz×dh

and βhj
∈ R|D|×dh are randomly generated matrices. In this

way, the enhanced feature matrices can be obtained, i.e.,

Hn = [H1|H2 · · · |Hm] ∈ R|D|×mdh . (15)

4.2.3 Output Layer

After obtaining the mapped feature matrices Zn and the en-
hanced feature matrices Hm, the output matrix Y ∈ R|D|×dy

can be predicted as

Y = [Zn|Hm] W (16)

where W ∈ R(ndz+mdh)×dy is the trainable weight matrix that
maps the concatenated mapped and enhanced features into the
output Y.

In the training procedure, the only trainable weight matrix
W can be easily solved by using the ridge regression approx-
imation of pseudoinverse [Zn|Hm]

+, i.e.,

W = [Zn|Hm]
+

Y. (17)

4.3 Rating Prediction and Algorithm Summary

In the testing procedure, for each user-item pair (u, i) with
unknown rating, the rating can be predicted by feeding the
user-item rating collaborative vector xu

i ∈ R1×(k+l) into the
broad learning procedure, which outputs the predicted user-
item rating strength vector ŷu

i ∈ R1×dy . Finally, the predicted
rating r̂u,i of user u to item i is calculated as follows,

r̂u,i =

s∑
j=1

ŷu
i [j]−min(ŷu

i )

max(ŷu
i )−min(ŷu

i )
ŷu
i [j] (18)

where ŷu
i [j] denotes the j-th entry of vector ŷu

i , and min(ŷu
i )

and max(ŷu
i ) denote the minimum and maximum values of

vector ŷu
i .

For clarity, the whole procedure of BroadCF is summarized
in Algorithm 1.

5 EXPERIMENTS

5.1 Experimental Settings
5.1.1 Datasets
The experiments are conducted on seven real-world publicly
available datasets obtained from the following two main
sources.

1) MovieLens1: The MovieLens dataset contains rating
data of multiple movies by multiple users, and also
contains movie metadata information and user attribute
information. This dataset is often used as the testing
dataset for evaluating the performance of a recommender
system. In our experiment, the ml-latest dataset (abbr.
ml-la) is adopted.

2) Amazon2: This dataset is an updated version of the
Amazon review dataset for 2018 [47], which contain-
s reviews (ratings, text, helpful polls), product meta-
data (descriptions, category information, price, brand
and image features) and links (also view/also buy
charts). In particular, six datasets, namely A-Digital-
Music, A-Grocery-and-Gourmet-Food, A-Patio-Lawn-
and-Garden, A-Automotive, A-Baby, and A-Instant-
Video, are adopted.

The statistics of the above seven datasets are summarized
in Table 2. From the table, it can be seen that one dataset
(i.e. A-Instant-Video) is relatively very large. Each dataset is
randomly split into the training set and testing set with ratio 3:1
for each user. A quarter of the samples in the training set are
randomly selected as the validation set to tune the appropriate
hyper-parameters for all the methods.

5.1.2 Evaluation Measures
We utilize the Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) to evaluate the performance of the
prediction results. They are calculated as follows,

RMSE =

√√√√ 1

|T |
∑

(u,i)∈T

(ru,i − r̂u,i)2

MAE =
1

|T |
∑

(u,i)∈T

|(ru,i − r̂u,i)|
(19)

where r̂u,i denotes the predicted rating value, ru,i is the
ground-truth rating, and T denotes the set of the tested
ratings. Smaller values of RMSE and MAE indicate the better
performance. When comparing the prediction performance of
BroadCF with that of baseline, the improvement percent is
calculated as

Improvement Percent =

Baseline Result− BroadCF Result
Baseline Result

× 100% (20)

That is, the error reduction percentage compared with the
baseline. In addition, the running cost, including training time,
testing time, and trainable parameter storage cost is also used
as evaluation criteria.

1. https://grouplens.org/datasets/movielens/
2. http://jmcauley.ucsd.edu/data/amazon/
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TABLE 3
The comparison results on prediction performance: The mean value of RMSE obtained by running each algorithm

five times on each dataset.

Methods ml-la A-Digital-Music A-Grocery-and-Gourmet-Food A-Patio-Lawn-and-Garden A-Automotive A-Baby A-Instant-Video
PMF 1.0016 2.2170 3.2144 3.0658 3.2621 2.6281 NA

NeuMF 1.9113 2.8638 2.9396 2.8667 2.7982 2.9844 1.2749
DMF 1.6325 3.6161 4.1642 4.1030 4.1488 3.2546 NA

DeepCF 1.9029 2.1101 2.2909 2.0957 2.1786 1.8420 NA
BPAM 0.8484 1.2509 1.7281 1.9805 1.9805 0.8678 2.4521

BroadCF 0.7982 0.7291 0.7422 0.8973 0.7720 0.8025 0.6364

TABLE 4
The comparison results on prediction performance: The mean value of MAE obtained by running each algorithm five

times on each dataset.

Methods ml-la A-Digital-Music A-Grocery-and-Gourmet-Food A-Patio-Lawn-and-Garden A-Automotive A-Baby A-Instant-Video
PMF 0.7525 1.6670 2.9038 2.6038 2.8330 2.1097 NA

NeuMF 1.5190 1.9742 2.0531 2.0718 1.9759 2.2517 1.0138
DMF 1.2297 3.4477 3.9433 3.8417 3.9055 3.8351 NA

DeepCF 1.5995 2.2104 2.0480 1.9768 1.9848 1.8652 NA
BPAM 0.6570 1.5800 1.2425 1.5440 0.6790 1.4900 1.9529

BroadCF 0.4822 0.3176 0.2414 0.3282 0.2542 0.2802 0.1961

5.2 Comparison Results
5.2.1 Baselines
We compare the proposed BroadCF approach with the follow-
ing five state-of-the-art approaches.
• PMF3 [36] is a classical CF approach that considers only

latent factors and uses matrix decomposition to capture
the linear relationship between users and items.

• DMF4 [24] uses a dual-path neural network instead of
the linear embedding operation used in ordinary matrix
decomposition.

• NeuMF5 [26] takes the connection of user embedding
and item embedding as the input and uses the Multi-
Layer Perceptron (MLP) model for prediction.

• DeepCF6 [29] integrates a unified deep collaborative fil-
tering framework with representation learning and match-
ing function learning.

• BPAM7 [28] is a neighborhood-based CF recommenda-
tion framework that captures the global influence of a
target users nearest users on their nearest target set of
users by introducing a global attention matrix.

The five state-of-the-art methods are tuned using the pa-
rameters suggested by the authors. For the PMF model, the
number of factors for both users and items is set to 30. The
regularization parameters for users and items are set to 0.001
and 0.0001, respectively. For the NeuMF model, the number
of predictors for the generalized matrix decomposition part
and the embedding sizes for users and items are set to 8
and 16, respectively. For the DMF model, the number of
predictors for both users and items is set to 64. For the
DeepCF model, the size of the MLP layer representing the
learning part is set to [512, 256, 128, 64], and the same
settings as DMF are used in the matching function learning

3. https://github.com/xuChenSJTU/PMF
4. https://github.com/RuidongZ/Deep Matrix Factorization Models
5. https://github.com/ZJ-Tronker/Neural Collaborative Filtering-1
6. https://github.com/familyld/DeepCF
7. https://github.com/xiwd/BPAM

part. For these deep models, i.e., DMF, NeuMF, and DeepCF,
the batch size is set to 256. For the BPAM model, we adjust
the number of nearest users and items in [3, 5, 7, 9]. For the
BroadCF algorithm, we set the number of both nearest users
and nearest items as 5, i.e., k = l = 5, the number of both
mapped feature groups and enhanced feature groups as 25,
i.e., n = m = 25, and the mapped feature dimension and
the enhanced feature dimension as 10 and 15 respectively,
i.e. dz = 10, dh = 15. All experiments are implemented in
Python and run on a server with an Intel Core i9-10900 CPU,
GeForce RTX 3090, and 256GB of RAM. For the DNNs-based
methods, including DMF, NeuMF and DeepCF, GPUs are
used, while for the other methods, including PMF, BPAM and
BroadCF, no GPU is used. The code of BroadCF is publicly
available at https://github.com/BroadRS/BroadCF.

5.2.2 Comparison on Prediction Performance
The comparison results on accuracy in terms of RMSE and
MAE are shown in Table 3 and Table 4 respectively. In this
experiment, we run each algorithm 5 times on each dataset
and report the average performance over the 5 runs. Out-
of-memory errors occur when training the PMF, DMF and
DeepCF models on the largest dataset, i.e. A-Instant-Video.
This is because the three models require the user-item rating
matrix as input data for the models, but for the A-Instant-
Video dataset, the entire rating matrix takes up to |U| · |V| · 32
bits of memory, which is approximately equal to 308.64 GB,
exceeding the 256 GB memory of the experimental machine.
As a result, no result is reported in the corresponding entries
of the comparison result tables (i.e. NA). According to the two
tables, we have the following key observations.

Overall, the RMSE and MAE values obtained by the pro-
posed BroadCF algorithm are much smaller than those by
other algorithms, including the classical CF method (PMF),
three DNNs-based algorithms (DMF, NeuMF and DeepCF),
and one BP neural network-based method (BPAM). In par-
ticular, compared with PMF, the proposed BroadCF algorithm
achieves at least 20.31% and 35.92% improvements in terms of
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TABLE 5
The comparison results on running cost: The training time (in seconds) consumed by each algorithm on each dataset.

Methods ml-la A-Digital-Music A-Grocery-and-Gourmet-Food A-Patio-Lawn-and-Garden A-Automotive A-Baby A-Instant-Video
PMF 98.24 202.92 1132.87 4072.20 4311.29 1100.17 NA

NeuMF 6013.53 109.42 75.38 68.71 80.47 101.84 48219.60
DMF 2462.42 62.70 85.75 123.25 104.01 209.50 NA

DeepCF 2059.59 202.80 306.60 362.40 366.40 501.00 NA
BPAM 159.36 128.72 143.30 125.70 130.27 137.80 11416.20

BroadCF 38.00 2.60 2.49 3.37 5.08 7.06 123.22

TABLE 6
The comparison results on running cost: The testing time (in seconds) consumed by each algorithm on each dataset.

Methods ml-la A-Digital-Music A-Grocery-and-Gourmet-Food A-Patio-Lawn-and-Garden A-Automotive A-Baby A-Instant-Video
PMF 0.03 0.01 0.01 0.01 0.01 0.01 NA

NeuMF 301.40 118.53 189.72 331.24 464.19 450.14 10825.30
DMF 21.11 7.95 29.69 95.61 73.82 126.90 NA

DeepCF 427.09 67.44 102.65 120.89 94.47 171.50 NA
BPAM 0.76 0.11 0.13 0.20 0.19 0.28 7.13

BroadCF 1.18 0.08 0.08 0.10 0.14 0.19 6.01

TABLE 7
The comparison results on running cost: The number of trainable parameters to be stored during the training

procedure of each algorithm on each dataset.

ml-la A-Digital-Music A-Grocery-and-Gourmet-Food A-Patio-Lawn-and-Garden A-Automotive A-Baby A-Instant-Video
PMF 310,080 173,910 300,840 312,030 347,910 342,900 NA

NeuMF 392,601 234,521 403,761 418,681 466,521 459,801 18,038,161
DMF 12,327,168 33,519,232 40,030,464 48,012,672 20,921,728 29,942,272 NA

DeepCF 39,266,060 97,444,766 115,947,300 137,582,762 62,738,578 86,977,048 NA
BPAM 43,615 31,500 78,750 157,500 157,500 189,000 7,518,367

BroadCF 3,125 3,125 3,125 3,125 3,125 3,125 3,125

RMSE and MAE, which is a relatively significant performance
improvement. The main reason is that PMF only captures the
linear latent factors, i.e. the linear relationship between users
and items, while BroadCF is able to capture the nonlinear
relationship between users and items. Compared with the three
DNNs-based algorithms, BroadCF obtains at least 50.08% and
60.79% improvements in terms of RMSE and MAE, which is
a more significant performance improvement. The main reason
may be that, although both the DNNs-based algorithms and
BroadCF are able to capture the nonlinear relationship between
users and items, the DNNs-based algorithms easily suffer from
the overfitting issue, i.e., given the very large number of
trainable parameters, the testing performance cannot be im-
proved compared with the training performance. As a contrast,
compared with BPAM, which is a lightweight neural network
based method, the performance of BroadCF is still better
than that of BPAM, although the performance improvement
is not such significant. As will be shown in the comparison
on running cost, the number of trainable parameters in BPAM
is relatively small compared with those of the DNNs-based
algorithms, although still larger than that of BroadCF. Overall,
the comparison results in terms of prediction performance
have confirmed the effectiveness of the proposed BroadCF
algorithm.

5.2.3 Comparison on Running Cost

Apart from the prediction performance, the proposed Broad-
CF algorithm has superiority on running cost. To this end,
this subsection compares the running cost of BroadCF with

the baselines, including the training time, testing time, and
trainable parameter storage cost.

Table 5 and Table 6 report the training time and the
testing time (in seconds) consumed by each algorithm on
each dataset. According to the two tables, we can see that
the proposed BroadCF algorithm is very efficient in terms of
running time. In particular, from Table 5, BroadCF consumes
several-magnitude shorter running time compared with the
baselines. On the ml-la dataset, BroadCF is twice faster than
the fastest baseline namely PMF, and it consumes about 23%
running time by BPAM. Most importantly, compared with the
three DNNs-based models, BroadCF consumes less than 2%
running time on the ml-la dataset. On the six Amazon datasets,
the four neural network based baselines namely NeuMF, DMF,
DeepCF and BPAM, are faster than PMF. This is mainly due to
that the neural network models take the rating vectors, which is
relatively efficient in the case of relatively sparse dataset with
small number of ratings. However, BroadCF is still much faster
than the four neural network based baselines. This is mainly
due to that the optimization problem of BroadCF is solved
by using the ridge regression approximation of pseudoinverse
without need of iterative training process. From Table 6, we
can see that although BroadCF is not the fastest algorithm in
terms of testing time, it is very close to the fastest baseline
namely PMF. This is mainly due to that, BroadCF requires
calculating the mapped features and enhanced features, in
addition to the multiplication by the trainable weight matrix,
while PMF only needs to calculate the matching score of the
user/item latent factors. Nevertheless, BroadCF is still much
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Fig. 2. Hyper-parameter analysis: The RMSE values obtained by BroadCF with varying number of nearest users k
and number of nearest items l.
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Fig. 3. Hyper-parameter analysis: The MAE values obtained by BroadCF with varying number of nearest users k and
number of nearest items l.

faster than the four neural network based baselines namely
NeuMF, DMF, DeepCF and BPAM. The above comparison
results on training time and testing time have confirmed
the efficiency of the proposed BroadCF algorithm from the
perspective of running time.

We also demonstrate the efficiency of the proposed BroadCF
algorithm from the perspective of storage requirements. Fol-
lowing [46], Table 7 reports the number of trainable parameter-
s to be stored during the training procedure of each algorithm
on each dataset. From the table, we can see that, the proposed
BroadCF algorithm is several-magnitude more efficient than
all the baselines. This is mainly due to that the only trainable
parameters to be stored in BroadCF are the weight matrix
W ∈ R(ndz+mdh)×dy , which is independent of the input data

size and dimension. On the contrary, all the baselines need
to store much more trainable parameters, especially for the
DNNs-based models. This result also confirms the fact that
BroadCF requires several-magnitude less training parameters,
even less than the linear model namely PMF. Despite the
relatively small number of trainable parameters, BroadCF can
still well capture the nonlinear relationship between users and
items and therefore generates much better results as shown
in the prediction performance comparison. This is mainly due
to the advantage achieved by mapping the original features
into the mapped features and then into the enhanced features
via random matrices plus nonlinear activation functions, which
can be regarded as learning nonlinear representations from
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Fig. 4. Hyper-parameter analysis: The RMSE and MAE values obtained by BroadCF with different number of mapped
feature groups n.
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Fig. 5. Hyper-parameter analysis: The RMSE and MAE values obtained by BroadCF with different mapped feature
dimension dz.

different views. Overall, the above comparison results on
running cost have confirmed the efficiency of the proposed
BroadCF algorithm from the perspective of trainable parameter
storage requirement.

5.3 Hyper-Parameter Analysis
In this section, we will analyze the impact of six hyper-
parameters on the performance of the proposed BroadCF
method, i.e., number of nearest users k, number of nearest
items l, number of mapped feature groups n, mapped feature
dimension dz , number of enhanced feature groups m, and en-
hanced feature dimension dh. When analyzing one parameter,
the other parameters are fixed.

5.3.1 Number of Nearest Users/Items
First of all, we will analyze the impact of the number of
nearest users/items, namely k and l, on the performance of
the proposed BroadCF method. To this end, we run BroadCF
by setting k and l in the range of [3, 5, 7, 9, 11], and report the
prediction performance in terms of RMSE and MAE in Fig. 2
and Fig. 3 respectively. From the figure, we can observe that a
relatively stable performance is achieved when using different
k and l on most datasets. That is, the variances of the RMSE
and MAE values in the two figures are relatively small as

shown in the heatmaps. However, a general trend is that when
increasing k and l, the performance would slightly degenerate
expect on the ml-la dataset. This is mainly due to the long-tail
distribution, i.e., most of users/items have very few ratings.
Setting a relatively large number of nearest users/items would
mistakenly introduce more noises, i.e., filling the missing
entries by means of the nearest rating via Eq. (4) and Eq. (6).
And the exception on the ml-la dataset has confirmed this
analysis. That is, ml-la is a relatively dense dataset, in which
the users/items contain more ratings. Considering the trade-off
between the running efficiency and the accuracy, we set k and
l to 5 in the experiments.

5.3.2 Hyper-Parameters in Feature Mapping

Secondly, we will analyze the impact of the hyper-parameters
in feature mapping module, including the number of mapped
feature groups n and the mapped feature dimension dz . In
the proposed BroadCF algorithm, the feature mapping module
plays the role of mapping the original input matrix composed
of user-item collaborative vectors into the mapped feature
matrix, which is the first step of capturing the nonlinear rela-
tionship between users and items. The two hyper-parameters
would affect the performance of this mapping capability.
To this end, we run BroadCF by setting n and dz in the
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Fig. 6. Hyper-parameter analysis: The RMSE and MAE values obtained by BroadCF with different number of
enhanced feature groups m.
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Fig. 7. Hyper-parameter analysis: The RMSE and MAE values obtained by BroadCF with different enhanced feature
dimension dh.

ranges of [15,20,25,30,35] and [5,10,15,20,25] respectively,
and report the RMSE and MAE values as a function of n
and dz in Fig. 4 and Fig. 5 respectively. From the two figures,
although the best values of n and dz vary from one dataset
to another, the performance variation is relatively small, i.e.
smaller than 0.01. This confirms the relatively insensitivity of
the proposed BroadCF algorithm to the hyper-parameters in
feature mapping. And in our experiments, we set n and dz to
25 and 10 respectively.

5.3.3 Hyper-Parameters in Feature Enhancement

Similar to the previous subsection, we will also analyze
the impact of the hyper-parameters in feature enhancement
module, including the number of enhanced feature groups
m and the enhanced feature dimension dh. In the proposed
BroadCF algorithm, the feature enhancement module plays
the role of mapping the mapped feature matrices into the
enhanced feature matrix, which is the second step of captur-
ing the nonlinear relationship between users and items. The
two hyper-parameters would affect the performance of this
enhancement capability. Similarly, we run BroadCF by setting
m and dh in the ranges of [15,20,25,30,35] and [5,10,15,20,25]
respectively, and report the RMSE and MAE values as a
function of m and dh in Fig. 6 and Fig. 7 respectively. From

the two figures, although the best values of m and dh vary from
one dataset to another, the performance variation is relatively
small, i.e. smaller than 0.01. This confirms the relatively
insensitivity of the proposed BroadCF algorithm to the hyper-
parameters in feature enhancement. And in our experiments,
we set m and dh to 25 and 15 respectively.

6 CONCLUSIONS

In this paper, we have proposed a new neural network based
recommender system called Broad Collaborative Filtering
(BroadCF). Compared with the existing DNNs-based recom-
mendation algorithms, the proposed BroadCF algorithm is also
able to capture the nonlinear relationship between users and
items, and hence generate very satisfactory recommendation
performance. However, the superiority of BroadCF is that it is
very efficient compared with the DNNs-based methods, i.e., it
consumes relatively very short training time and only requires
relatively small amount of data storage, in particular trainable
parameter storage. The main advantage lies in designing a
data preprocessing procedure to convert the original rating
data into the form of (Rating collaborative vector, Rating
one-hot vector), which is then feed into the very efficient
BLS for rating prediction. Extensive experiments conducted
on seven benchmark datasets have confirmed the superiority
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of the proposed model, including both prediction performance
and running cost.
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